MOT16: A Benchmark for Multi-Object Tracking
نویسندگان
چکیده
Standardized benchmarks are crucial for the majority of computer vision applications. Although leaderboards and ranking tables should not be over-claimed, benchmarks often provide the most objective measure of performance and are therefore important guides for reseach. Recently, a new benchmark for Multiple Object Tracking, MOTChallenge, was launched with the goal of collecting existing and new data and creating a framework for the standardized evaluation of multiple object tracking methods [27]. The first release of the benchmark focuses on multiple people tracking, since pedestrians are by far the most studied object in the tracking community. This paper accompanies a new release of the MOTChallenge benchmark. Unlike the initial release, all videos of MOT16 have been carefully annotated following a consistent protocol. Moreover, it not only offers a significant increase in the number of labeled boxes, but also provides multiple object classes beside pedestrians and the level of visibility for every single object of interest.
منابع مشابه
Improvements to Frank-Wolfe optimization for multi-detector multi-object tracking
This paper proposes a novel formulation for the multiobject tracking-by-detection paradigm for two (or more) input detectors. Using full-body and heads detections, the fusion helps to recover heavily occluded persons and to reduce false positives. The assignment of the two input features to a person and the extraction of the trajectories is commonly solved from one binary quadratic program (BQP...
متن کاملSimilarity Mapping with Enhanced Siamese Network for Multi-Object Tracking
Multi-object tracking has recently become an important area of computer vision, especially for Advanced Driver Assistance Systems (ADAS). Despite growing attention, achieving high performance tracking is still challenging, with state-of-theart systems resulting in high complexity with a large number of hyper parameters. In this paper, we focus on reducing overall system complexity and the numbe...
متن کاملSOT for MOT
In this paper we present a robust tracker to solve the multiple object tracking (MOT) problem, under the framework of tracking-by-detection. As the first contribution, we innovatively combine single object tracking (SOT) algorithms with multiple object tracking algorithms, and our results show that SOT is a general way to strongly reduce the number of false negatives, regardless of the quality ...
متن کاملMulti-person Tracking by Multicut and Deep Matching
In [1], we proposed a graph-based formulation that links and clusters person hypotheses over time by solving a minimum cost subgraph multicut problem. In this paper, we modify and extend [1] in three ways: 1) We introduce a novel local pairwise feature based on local appearance matching that is robust to partial occlusion and camera motion. 2) We perform extensive experiments to compare differe...
متن کاملAdaptive Neural Network Method for Consensus Tracking of High-Order Mimo Nonlinear Multi-Agent Systems
This paper is concerned with the consensus tracking problem of high order MIMO nonlinear multi-agent systems. The agents must follow a leader node in presence of unknown dynamics and uncertain external disturbances. The communication network topology of agents is assumed to be a fixed undirected graph. A distributed adaptive control method is proposed to solve the consensus problem utilizing re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1603.00831 شماره
صفحات -
تاریخ انتشار 2016